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ABSTRACT

In fitting an ab initio potential for H O-H , Phillips, et al. [J. Chem. Phys. 111000111,2 2

5824 (1994)] excluded certain terms in the angular expansion they believed to vanish

because of "the requirement that the potential is invariant to inversion of all coordinates

through the origin." However, there has been some question in the literature as to

whether these terms must, in fact, vanish owing to spatial inversion symmetry. By

providing counterexamples, it is demonstrated here that this is not required by

fundamental spatial symmetry. However, these terms do appear to vanish for realistic

molecular interactions and this symmetry may arise from the two-body nature of the

electrostatic Hamiltonian.
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111... IIInnntttrrroooddduuuccctttiiiooonnn

An accurate method for calculating energy transfer in nonreactive molecular

collisions is the close coupling approach which solves the time independent Schrodinger

equation by expanding the total system wavefunction in a basis set of rotation (and

vibration) functions of the asymptotic molecular species and a partial wave expansion for

the collision coordinate. This leads to coupled second-order differential equations for

radial functions which are labeled by the asymptotic vibration-rotation states and the

partial wave orbital angular momentum; the coupling comes from the orientation

dependence of the interaction potential. Calculation of the required matrix elements of

the interaction potential over the expansion basis functions is facilitated by expanding

the orientation dependence of the potential in an appropriate complete set of orthonormal

functions so that the angular part of the matrix elements can be obtained from angular

momentum coupling theory.

It is always advantageous to use any symmetry inherent in the collision system to

decouple the problem into smaller, noninteracting sets of states. To give the simplest

1example, for the case of a diatomic molecule colliding with a structureless atom it is

convenient to combine the diatomic rotational angular momentum, j, with the orbital

angular momentum of the collision, �, to form a total angular momentum J. Because of

conservation of both total angular momentum (owing to rotational invariance) and parity

(owing to invariance on spatial inversion), the problem can be separated into uncoupled

�+jsubsets labeled by J and by parity, � = (-1) . For this case appropriate expansion

functions for the interaction potential are Legendre polynomials, P (cosθ), where θ is theλ

angle between the diatomic bond and the collision coordinate. Molecular symmetries

may limit the required angular expansion terms. For example, for homonuclear diatomic

molecules only terms with even λ can be nonzero. Because the matrix elements for

even P terms vanish unless the rotational levels, j and j' have the same parity, oneλ

immediately obtains the collisional selection rule that ∆j must be even, and calculations
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can be done separately for the even and the odd rotational levels. Similar, if less

obvious, collisional selection or "propensity" rules have been obtained for more complex

2systems.

Of particular relevance to the present discussion is the symmetry of the angular

3terms used to describe the interaction of two linear rigid rotors. These are labeled by

three indices: � and � which describe the tensor order of the dependence on1 2

orientation of molecules 1 and 2, respectively, and � which is the vector sum of � and1

� . Because the interaction potential must be invariant to spatial inversion of the whole2

system and because the expansion terms with odd � +� +� change sign under this1 2

symmetry operation, these terms must vanish.

It is important that angular terms in the expansion of the interaction which must

vanish owing to symmetry not be included inadvertently. This may seem like a trivial

point, but it is quite possible to obtain nonzero values for such terms, e.g., when fitting

a limited set of ab initio points. The problem is easily avoided if these terms are

simply excluded from the fit. For most systems studied to date the appropriate

symmetries have been fairly obvious. However, as computational abilities have

increased, close coupling studies have been attempted for more complex collision

systems where the symmetries may be less readily apparent. Recent work has focused

4-7 8-10on collisions of symmetric top (NH ) and asymmetric top (H O) rigid rotors3 2

colliding with a linear rigid rotor, H , and, unfortunately, a question is raised in the2

literature concerning whether certain terms in the angular expansions appropriate to these

7,11systems must vanish owing to symmetry. The terms in question are analogous to

the odd � +� +� terms discussed above for two linear rotors. In the case of NH1 2 3

these terms affect collisional propensity rules and might explain some discrepancies

11between experiment and the most recent theoretical values.

The present work addresses the question of symmetry in the interaction between an

(a)symmetric rotor and a linear rotor. The next section presents the formalism and



3

derives some of the accepted symmetry relations. Section 3 presents numerical examples

which indicate that the symmetry in question is not a consequence of any fundamental

spatial symmetry. On the other hand it does appear to be generally valid for empirical

functions that are expected to be typical of intermolecular forces. Also, attempts at

fitting the H O-H ab initio potential in the course of work leading to Ref. 9 which did2 2

include these terms, found them to be numerically small. While the symmetry relation

in question is not a general property of the symmetry of space to rotations, reflections,

and inversion through the origin, it may, nonetheless, result from underlying symmetry

7of the electronic structure Hamiltonian as suggested by Rist, Valiron, and Alexander,

although the proof presented there is valid only for long-range interactions.

222... CCCoooooorrrdddiiinnnaaattteeesss aaannnddd aaannnggguuulllaaarrr eeexxxpppaaannnsssiiiooonnn fffuuunnnccctttiiiooonnnsss

Slightly different conventions for describing the coordinates for the collision of an

(a)symmetric rigid rotor with a linear rigid rotor have been used. The present work

follows the convention adopted in this laboratory; the connection with other choices was

discussed in Ref. 9. The overall system is described in space-fixed coordinates with

origin at the collisional center of mass. The collision coordinate, RRR, the vector from the

(a)symmetric top center of mass to the linear rotor center of mass, is then conveniently

described by the usual spherical polar coordinates (R,Θ,Φ) where R is the radial

distance, Θ is measured from the z-axis, and Φ is measured from the xz-plane. The

orientation of the linear molecule can also be described by space-fixed polar angles

(Θ′ ,Φ′ ). The orientation of the (a)symmetric top requires three angles, traditionally the

Euler angles (α,β,γ) which rotate the space-fixed axes to an axis system fixed in the

frame of the molecule. Following earlier work we do not consider here the most

general case, but assume that the top has a plane of symmetry; this is always true for

9symmetric tops, such as NH , and is also true for H O. We choose the3 2

molecule-fixed axes such that the xz-plane is a plane of symmetry. If the molecule has
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a two-fold or higher axis of symmetry (always true for a symmetric top) we chose this

axis as the molecule-fixed z-axis; otherwise (e.g., a planar molecule such as deuterated

water) we choose one of the two principal axes of inertia which are in the molecular

plane (the xz-plane) as the molecule-fixed z-axis. The molecular orientation

α,β,γ = 0,0,0 then corresponds to alignment of the molecule-fixed and space-fixed axis

systems. A general orientation α,β,γ is produced by rotating the molecule-fixed axis

system, beginning at 0,0,0, by an angle α about the molecule-fixed z-axis, followed by

a rotation β about the molecule-fixed y-axis, and then another rotation γ about the

molecule-fixed z-axis.

We choose angular expansion functions as rotationally invariant contractions of

spherical harmonics for Θ,Φ and Θ′ ,Φ′ and rotation matrices for α,β,γ :

���V(R,Θ,Φ,Θ′ ,Φ′ ,α,β,γ) = v (R) T (Θ,Φ,Θ′ ,Φ′ ,α,β,γ) . (1)∑�� � m � � � m � �1 1 2 1 1 2

where

� � �-1 ��� � 1 2 �T (Θ,Φ,Θ′ ,Φ′ ,α,β,γ) = (1+δ ) (2)
� m � � m 0 ∑�� �r r r�1 1 2 1 1 2

� � +m +� +� �1 1 1 2 1Y (Θ′Φ′ ) Y (ΘΦ) [D (α,β,γ) + (-1) D (α,β,γ)] .
� r �r m r -m r2 2 1 1 1 1

�Here (:::) is a Wigner 3-j symbol, D (α,β,γ) is a Wigner rotation matrix, andmr
12Y (ΘΦ) is a spherical harmonic, all as defined by Silver, and the sum is over r ,

�m 1

r , and r. Eq. (1) is a generalization of the expansion terms used for two linear2
3rotors. Because the first molecule is no longer cylindrically symmetric it requires a

rotation matrix labeled by � ,m in place of a spherical harmonic; otherwise � , � , and1 1 1 2

� serve analogous roles.

Because of rotational invariance, the intermolecular potential, and other physically

meaningful quantities, can depend on only a smaller number of relative angles

(sometimes called body-fixed angles, not to be confused with the rotor body-fixed

coordinate system discussed above). In general, one can choose three angles in an
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arbitrary way, corresponding to rotation of the collision system as a whole. A

convenient choice does this by fixing the symmetric or asymmetric rotor orientation at

α,β,γ=0,0,0 and defining θ,ϕ and θ ′ ,ϕ′ as the collision direction and the linear molecule

9orientation relative to the rotor molecule body-fixed axis system. In terms of these

relative coordinates Eqs. (1)-(2) can be written as

���V(R,θ,ϕ,θ ′ ,ϕ′ ) = v (R) t (θ,ϕ,θ ′ ,ϕ′ ) , (3)∑�� � m � � � m � �1 1 2 1 1 2

where

� � �-1 ��� � 1 2 �t (θ,ϕ,θ ′ ,ϕ′ ) = (1+δ ) (4)
� m � � m 0 ∑�� �r r r�1 1 2 1 1 2

� +m +� +�1 1 2Y (θ ′ϕ ′ ) Y (θϕ) [δ + (-1) δ ] ,
� r �r m r -m r2 2 1 1 1 1

δ is a Kronecker delta, equal to one if i=j and to zero otherwise, and the sum isij

again over r ,r ,r.1 2
5,7,8Another body-fixed system has been used previously in which the orientation

of the linear molecule is measured not with respect to the water-fixed axes but with

respect to the intermolecular vector, RRR; i.e., the body-fixed z-axis is aligned with RRR, the

body-fixed x-axis is in the plane defined by the water-fixed z-axis and RRR, and the

body-fixed y-axis is perpendicular to both RRR and the water-fixed z-axis, The linear

molecule orientation is then described by polar coordinates θ″,ϕ″ in this local,

body-fixed coordinate system. Eqs. (1) and (2) are then written as

���V(R,θ,ϕ,θ″,ϕ″) = v (R) τ (θ,ϕ,θ″,ϕ″) , (5)∑�� � m � � � m � �1 1 2 1 1 2

where

� � �-1 1/2 ��� � 1 2 �τ (θ,ϕ,θ″,ϕ″) = (1+δ ) [(2�+1)/4π] (6)
� m � � m 0 ∑�� �s -s 0�1 1 2 1 s 1 11

s � � +m +� +� �1 1 1 1 2 1(-1) Y (θ″ϕ″) [D (ϕ,θ,0) + (-1) D (ϕ,θ,0)] .
� s s m s -m2 1 1 1 1 1

The orthonormality integrals of the expansion functions, Eqs. (2), (4), and (6), are

useful for expanding the angle dependence of various quantities, such as the interaction
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potential, and for calculating matrix elements.

�
� sinΘdΘ dΦ sinΘ′dΘ′ dΦ′ dα sinβdβ dγ (7)
�

*T (Θ,Φ,Θ′ ,Φ′ ,α,β,γ) T (Θ,Φ,Θ′ ,Φ′ ,α,β,γ)
� m � � � ′m ′ � ′ � ′1 1 2 1 1 2

2 -2 -1= 16π (1+δ ) (2� +1) δ δ δ δ ,m 0 1 � � ′ m m ′ � � ′ � � ′1 1 1 1 1 2 2

and

� *
� sinθdθ dϕ sinθ ′dθ ′ dϕ′ t (θ,ϕ,θ ′ ,ϕ′ ) t (θ,ϕ,θ ′ ,ϕ′ ) (8)
� � m � � � ′m ′ � ′ � ′1 1 2 1 1 2

� *= � sinθdθ dϕ sinθ″dθ″ dϕ″ τ (θ,ϕ,θ″,ϕ″) τ (θ,ϕ,θ″,ϕ″)
� � m � � � ′m ′ � ′ � ′1 1 2 1 1 2

-2 -1= 2 (1+δ ) (2� +1) δ δ δ δ .m 0 1 � � ′ m m ′ � � ′ � � ′1 1 1 1 1 2 2

Symmetry properties of these angular functions have been discussed already in the

literature, although details have not been given for the body-fixed coordinates, Eq. (4),

which we prefer to use. Consider first the complex conjugate of t (θ,ϕ,θ ′ ,ϕ′ ).
� m � �1 1 2

Using the relation for the complex conjugate of a spherical harmonic,

* mY (θ,ϕ) = (-) Y (θ,ϕ) , (9)
� ,m � ,-m

the fact that the three projection values in a 3-j symbol must sum to zero, and the fact

that

� a b c� a+b+c �a b c�= (-) , (10)�-d -e -f� �d e f�
*it is readily shown that t (θ,ϕ,θ ′ ,ϕ′ ) = t (θ,ϕ,θ ′ ,ϕ′ ), i.e, that these

� m � � � m � �1 1 2 1 1 2

angular expansion coefficients are real. Since the potential is real, the radial coefficients

are likewise real quantities.

Consider next reflection in the rotor xz-plane, which we have taken to be a plane

of symmetry. This has the effect of changing ϕ � -ϕ and ϕ′ � -ϕ′ . Using the fact

that

mY (θ,-ϕ) = (-) Y (θ,ϕ) , (11)
� ,m � ,-m

changing signs of the projection values in the 3-j symbols using Eq. (10), which is

allowed because these are dummy summation indices, and using the fact that the three



7

projection values sum to zero, Eq. (4) becomes

� +� +�+r � � �-1 ��� 1 2 1 � 1 2 �t (θ,-ϕ,θ ′ ,-ϕ′ ) = (1+δ ) (-) (12)
� m � � m 0 ∑�� �r r r�1 1 2 1 1 2

� +m +� +�1 1 2Y (θ ′ϕ ′ ) Y (θϕ) [δ + (-1) δ ] .
� r �r m ,-r -m ,-r2 2 1 1 1 1

r1 m1Because of the delta symbols, (-) = (-) . It is also obvious that δ = δ , givingi,j -i,-j

finally

t (θ,-ϕ,θ ′ ,-ϕ′ ) = t (θ,ϕ,θ ′ ,ϕ′ ) . (13)
� m � � � m � �1 1 2 1 1 2

Thus, any function expanded as in Eq. (3) is automatically symmetric on reflection in

the body-fixed xz-plane. Note that the two delta functions, which derive from the two

rotation matrices in the space-fixed coordinates, Eq. (2), have been switched to

accomplish this. In fact, the phased sum over m in Eqs. (2), (4), and (6) was chosen1

in the expansion functions precisely to account for reflection symmetry in the xz-plane.

7As discussed in some detail by Rist, Valiron, and Alexander the m index is1

closely related to rotation about the (a)symmetric top axis; in general, if the rotor has a

C axis of symmetry only values of m which are integral multiples of n are allowed.nv 1

For a molecule like H O which has a C axis, this is equivalent to the yz-plane as2 2v

well as the xz-plane being a plane of symmetry. Rather than consider rotation about

the z-axis, which was discussed by Rist, Valiron, and Alexander, we consider here

reflection in the yz-plane which has the effect of taking ϕ � π-ϕ and ϕ′ � π-ϕ′ .

Using the fact that

Y (θ,π-ϕ) = Y (θ,ϕ) , (14)
� ,m � ,-m

changing the signs of the projection indices in the 3-j symbol, and swapping the role of

the two delta functions as above, it is straightforward to show that

m1t (θ,π-ϕ,θ ′ ,π-ϕ′ ) = (-) t (θ,ϕ,θ ′ ,ϕ′ ) . (15)
� m � � � m � �1 1 2 1 1 2

Because the potential must be invariant to reflection in the yz-plane, V(R,θ,-ϕ,θ ′ ,-ϕ′ ) =

V(R,θ,ϕ,θ ′ ,ϕ′ ), which implies that
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���v (R) t (θ,-ϕ,θ ′ ,-ϕ′ ) (16)∑�� � m � � � m � �1 1 2 1 1 2
m��� 1= v (R) (-) t (θ,ϕ,θ ′ ,ϕ′ )∑�� � m � � � m � �1 1 2 1 1 2

���= v (R) t (θ,ϕ,θ ′ ,ϕ′ )∑�� � m � � � m � �1 1 2 1 1 2

Because the expansion functions are orthonormal the equality holds separately for each

angular term so that

m1(-) v (R) = v (R) , (17)
� m � � � m � �1 1 2 1 1 2

and potential expansion coefficients with odd m must vanish.1

We consider finally the symmetry of inverting the system through the origin, the

symmetry which defines the parity of a system. Although it is agreed that this

symmetry must leave the potential energy unaffected, it is the effect of this symmetry

on the angular expansion functions which is somewhat controversial. Rist, Valiron, and

7 �1+�2+�Alexander recently proved that that terms with (-) odd must vanish owing to

this symmetry for the long-range electrostatic part of the interaction. They further noted

that these terms did not appear to be required in a numerical fit to the short-range part

of an ab initio NH -H interaction. These terms were also found to be very small in3 2
9numerical fits to an ab initio H O-H potential, and they were excluded in the final2 2

fit.

It is easiest to consider this symmetry in the full space-fixed coordinate system of

Eqs. (1) and (2). Space inversion takes a vector into its negative, i.e., RRR � -RRR which is

equivalent to Θ � π-Θ, and Φ � Φ+π. The spherical harmonics transform as

�Y (π-Θ,Φ+π) = (-) Y (Θ,Φ) . (18)
� ,m � ,m

There is no comparable transformation for the rotation matrices; in general, space

inversion converts a right-handed coordinate system into a left-handed one and there is

no rotation which will interconvert these. Because we have postulated a plane of
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symmetry for our system, however, and because space inversion followed by reflection is

equivalent to a regular rotation there is a simple transformation which describes this

13combination: α � α+π, β � π-β, γ � π-γ. The effect of this transformation on the

rotation matrices is given by:

� im(π-γ) � ir(α+π) �+m �D (α+π,π-β,π-γ) = e d (π-β) e = (-1) D (α,β,γ) (19)m,r m,r -m,r
14where Eqs. (4.2.4) and (4.2.6) of Edmunds have been used. Combining Eqs. (18) and

(19) with Eq. (2) it is readily shown that

T (π-Θ,Φ+π,π-Θ′ ,Φ′ -π,α+π,π-β,π-γ) = T (Θ,Φ,Θ′ ,Φ′ ,α,β,γ) . (20)
� m � � � m � �1 1 2 1 1 2

Thus, each term is separately invariant to this symmetry; it places no restrictions on the

allowed terms.

It should be noted that angular terms with m =0 have cylindrical symmetry about1

the (a)symmetric top rotor axis and thus have the same symmetry as a linear rotor; the

rotation matrices in Eq. (2) reduce to a spherical harmonic for which the effect of

spatial inversion can be described by Eq. (18). In this case it is straightforward to

show that terms with odd � +� +� do, in fact, vanish owing the spatial inversion1 2

symmetry.

3. Empirical potentials

4-7 8-10Studies of NH -H and H O-H to date have been based on fits to ab3 2 2 2

initio points on the interaction potential energy surface. It is important in such fits to

impose the appropriate symmetries from the outset; otherwise it is easy to find spurious

contributions from fits to limited numbers of points. If a particular angular term,

X (Ω), vanishes owing to some symmetry, �, which transforms the angles according toλ

� Ω = Ω', then it is important to include both Ω and Ω' in the fit (for all Ω) to

ensure that X does, in fact, go to zero in the fit. Of course, even if symmetricallyλ

related points are not specifically included, fits should converge to zero for such
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symmetry forbidden terms if enough angular points are available, but this convergence

can be quite slow. For an (a)symmetric top and a linear rotor, there are four angular

degrees of freedom, which makes it very difficult to obtain adequate numbers of points

to ensure such convergence.

On the other hand, if an interaction potential can be readily obtained (e.g.,

analytically) for arbitrary orientations, it is straightforward to obtain the angular

expansion terms using orthogonality relationships, Eq. (8), and four-dimensional numerical

quadrature. In particular, the body-fixed integrals over d(cosθ) and d(cosθ ′ ) are done

with standard Gauss-Legendre quadratures and integrals over ϕ and ϕ′ are done with

even spaced (Gauss-Mehler) quadratures. The present work has analyzed a number of

"empirical" analytic potential energy functions into angular expansion terms in the hope

of shedding some light on symmetry properties. Most of the calculations were done for

H O-H , but NH -H and HDO-H which have different symmetry were also2 2 3 2 2

considered. The geometries describing each of these systems are listed in Table 1; note

that the molecules are placed with their center of mass at the origin, with the symmetry

axis along the z-axis, and with the xz-plane a plane of symmetry, as required for the

internal coordinates specified by Eq. (4). The interaction potentials were assumed to be

functions only of interatomic distances, which are readily calculated from the atomic

coordinates in Table 1 and the H coordinates. The latter are easily calculated for2

arbitrary collision coordinates by starting at the center of the H molecule which is2

located at polar coordinates, R,θ.ϕ, and adding or subtracting cartesian coordinates

corresponding to the polar coordinates R /2,θ ′ ,ϕ′ , where the hydrogen bond lengthHH
-9has been taken as R = 1.4022 a (1 a = Bohr radius = 5.292×10 cm). Since theHH 0 0

interaction depends only on interatomic distances it must be invariant to all spatial

symmetries: overall rotation, reflection, or space inversion. All the empirical potentials

were further designed to reflect exchange of identical particles. If the H hydrogens are2

designated as H and H and the H O hydrogens as H and H , atom-atom potentiala b 2 1 2
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terms, V (R ), V (R ), V (R ), V (R ), where the notation for atom-atom distancesx 1a x 2a x 1b x 2b

should be evident, were always included symmetrically.

Several calculations were done using pairwise additive atom-atom interactions; this

is a very common model for interaction potentials and is thought to provide a

reasonably accurate description of short-range forces, which are of most concern. The

atom-atom forms were either a Lennard-Jones,

12 6V (R ,ε.R) = ε [(R /R) - 2 (R /R) ] , (21)LJ m m m

or a simple exponential repulsion

V (A,α,R) = A exp (-R/α) . (22)exp

The potential parameters were chosen rather arbitrarily and are included in Table 1.

Convergence of selected expansion terms for H O-H using the pairwise additive2 2

Lennard-Jones potential, Eq. (21), at a collision distance of R=4 a is shown as a0

function of the number of integration points (the same number was used for each of the

four dimensions) in Table 2. It turns out that this interaction potential is highly

anisotropic. Nonetheless these terms with relatively low indices show reasonable

convergence except for terms with � +� +� odd. The latter are found to approach zero,1 2

but require relatively large numbers of integration points for convergence. Interestingly,

convergence of these terms is much slower using even numbers of points. (It should,

perhaps, be noted that the smallest number of integration points reported in Table 2

corresponds to two orders of magnitude more orientations than have been available in

even the largest ab initio studies.) Results using a pairwise additive exponential

interaction, Eq. (22), were entirely analogous and are not shown; this calculation like all

the others reported here was done for a collision distance R=4 a .0

Results for NH -H using a pairwise additive exponential function are shown in3 2

Table 3. They too are seen to be entirely analogous to results for H O-H in Table 2.2 2

Similar calculations with a pairwise additive exponential interaction for HDO-H , one2

which set the H-H and H-D interactions equal (as expected from the Born-Oppenheimer
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approximation) and another which used a different interactions (H-D stronger than H-H

by a factor of two) also showed the same behavior, and results are not presented here.

Expansion terms which are expected to vanish owing to other symmetries in these

systems, for example, terms with odd � or, for H O-H , terms with odd � or m ,2 2 2 1 1

were also examined and found to converge quickly to zero; for most of these the

symmetrically related points are included automatically in the integration scheme and so

cancel even for very small numbers of integration points.

It appears that terms with odd � +� +� generally vanish for these pairwise1 2

additive atom-atom potentials, although relatively large numbers of integration points are

needed to obtain numerically small values. This may be a general property of potentials

which can be written as pairwise additive atom-atom interactions as suggested by

15Briels, although his derivation was limited specifically to pairwise inverse powers

and/or exponentials and also to collision distances large enough that atoms of the two

species do not interpenetrate.

It therefore seemed reasonable to consider more general forms for the interaction

16potential, for example, three-body terms. As noted by Cooper and Hutson, an

important three-body term, especially at long-range, is the triple dipole interaction. A

simplified functional form based on the triple dipole term was therefore considered:

-3 -3 -3V = α (3 cosθ cosθ cosθ + 1) r r r (23)ddd 1 2 3 1 2 3

where the angles refer to the interior angles of the triangle formed by three atoms, ri

are the distances which form the sides of the triangle, and α is a proportionality

constant. A calculation was done for H O-H including this terms for the H2 2 2

hydrogens with each of the H O atoms, and using α=3000 for the interaction with2

oxygen, α=1000 for the interaction with the hydrogens, distances in atomic units, and

numbers of integration points, N = 8, 15, and 21. The odd � +� +� terms, however,1 2

converged smoothly to zero for this interaction in a manner analogous to that seen in

Tables 2 and 3..
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Although it was beginning to appear that restriction to even � +� +� might be a1 2

general property, some other, essentially ad hoc functional forms were also tried, a few

of which did, in fact, provide counterexamples. These were all done for H O-H ; to2 2

describe these it will be convenient to label the atom-atom distances as R , R , R ,1a 1b 2a

R for distances between hydrogens in the H (labeled a and b) and those in H O2b 2 2

(labeled 1 and 2) and R and R for distances between the oxygen and the twoOa Ob

atoms in H . The first function which was found to require odd � +� +� terms2 1 2

multiplied the pairwise additive exponential interaction discussed above by the factor:

factor = exp(-R R /10) * exp(-R R /10) , (24)1a 1b 2a 2b

where distances are in atomic units. Selected angular expansion terms for this

interaction are shown in Table 4. Although the pattern of convergence on using more

integration points was similar to that found for other interactions, it is clear that odd

� +� +� terms do not vanish.1 2

Another function for which the odd � +� +� terms did not vanish was obtained1 2

by multiplying the pairwise additive exponential interaction by the factor:

21 -12 -12factor = 4×10 (R +R +R +R ) (R +R ) . (25)1a 1b 2a 2b Oa Ob

Expansion terms converged with respect to number of integration points are shown in

Table 5. Another counterexample which does not include a pairwise additive factor is

4V = 5×10 exp[-(R +R +R +R )/3.5] exp[-(R +R )/2.5] . (26)1a 1b 2a 2b Oa Ob

Expansion terms for this function are also shown in Table 5. A handful of other

functional forms -- of varying plausibility as representative of interaction potentials --

were tried; many could be expanded using only even � +� +� terms but at least one1 2

more was found which required odd terms.

444... DDDiiissscccuuussssssiiiooonnn

Several simple models for the interaction potential between an (a)symmetric top

rotor and a linear rotor were expanded in terms of the angular functions used in
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quantum molecular scattering calculations. These angular expansion functions are labeled

by indices � and � , which describe the tensor order of the dependence of the1 2

interaction on orientation of molecules 1 and 2, respectively, and � which is the vector

sum of � and � . The chosen functions could be readily evaluated analytically for any1 2

specified collision orientation, so the angular expansion terms could be determined by

converged four-dimensional numerical quadratures. There has been some controversy in

the literature whether terms with odd � +� +� must vanish owing to spatial symmetry.1 2

For some of the functions considered here these terms were found to be nonzero.

Because the potential energy functions considered here depend only on interatomic

distances and because allowed spatial symmetry operations must preserve these distances,

the functions considered here must be invariant to these symmetries. The fact that some

functions were found which required expansion terms with odd � +� +� demonstrates1 2

that such terms cannot be excluded on the grounds of the underlying symmetry of space

itself, i.e., rotations, reflections, or inversion.

On the other hand, it is possible that the electronic structure Hamiltonian has

additional symmetries which exclude such terms from realistic potential energy functions.

This Hamiltonian consists of two-body interactions, specifically simple inverse powers of

7,15,17distances, and such terms are often found to lead to only even � +� +� terms,1 2

although a proof for the general case does not yet seem to be available. Because of its

importance for fitting interaction potentials to use in molecular scattering calculations

further work to prove the generality (or falsehood) of this conjecture would be most

useful.
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Table 1. Geometries and potential parameters for H O, NH , and HDO with H .2 3 2

H O coordinates (x,y,z), a2 0

O 0 . 0 . 0 .1239

H -1 .4303 0 . -0 .983231

H 0 .4303 0 . -0 .983232
-1potential parameters, distances in a , energies in cm0

H-H R =4 .5 ε=40 A=30 ,000 α=3 .5m

O-H R =5 .5 ε=80 A=50 ,000 α=2 .5m

NH coordinates (x,y,z), a3 0

N 0 . 0 . 0 .127

H 1 .7710 0 . -0 .59281

H -0 .8855 1 .5337 -0 .59282

H -0 .8855 -1 .5337 -0 .59283
-1potential parameters, distances in a , energies in cm0

H-H A=3000 α=3 .0

O-H A=4000 α=3 .5

HDO coordinates (x,y,z), a0

O 0 .13591 0 . 0 .13326

H -1 .41255 0 . 1 .06817

D -0 .38093 0 . -1 .60013

-1potential parameters, distances in a , energies in cm0

H-H A=10 ,000 α=3 .5

O-H A=50 ,000 α=2 .5

_________________________________________________________
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Table 2. Convergence of selected angular expansion terms for H O-H with the2 2

Lennard-Jones interaction as a function of number of Gauss integration points. Terms

with odd � +� +� are indicated with an asterisk. Number in parentheses is power of1 2

ten.

number of Gauss poin t s____________________________________________________________________

� m � � 12 15 18 21 24 32 481 1 2 ________ ________ _________ _________ _________ _________ _________

0 0 0 0 3 .0( 6) 3 .1( 6) 3 .1( 6) 3 .1( 6) 3 .06( 6) 3 .06( 6) 3 .06( 6)

1 0 0 1 4 .2( 6) 4 .3( 6) 4 .3( 6) 4 .3( 6) 4 .26( 6) 4 .26( 6) 4 .26( 6)

1 0 2 1 -2 .5( 6) -2 .6( 6) -2 .6( 6) -2 .6( 6) -2 .62( 6) -2 .62( 6) -2 .62( 6)

1 0 2 3 3 .9( 6) 4 .0( 6) 4 .0( 6) 4 .0( 6) 3 .95( 6) 3 .95( 6) 3 .95( 6)

2 2 0 2 2 .3( 6) 2 .3( 6) 2 .3( 6) 2 .3( 6) 2 .35( 6) 2 .35( 6) 2 .35( 6)

2 2 2 0 7 .9( 5) 9 .0( 5) 9 .0( 5) 9 .0( 5) 9 .00( 5) 9 .01( 5) 9 .01( 5)

*2 2 2 1 2 .6( 4) 5 .0( 0) 1 .0( 3) -4 .3( -5) 2 .30( 1) 8 .47( -2) 4 .46( -7)

2 2 2 2 -1 .1( 6) -1 .2( 6) -1 .2( 6) -1 .2( 6) -1 .22( 6) -1 .22( 6) -1 .22( 6)

*2 2 2 3 -3 .1( 4) -5 .1( 0) -1 .1( 3) -1 .3( -3) -2 .32( 1) -8 .03( -2) -3 .76( -7)

2 2 2 4 2 .1( 6) 2 .2( 6) 2 .2( 6) 2 .2( 6) 2 .19( 6) 2 .19( 6) 2 .19( 6)

4 4 2 2 2 .6( 5) 6 .4( 5) 6 .3( 5) 6 .4( 5) 6 .44( 5) 6 .44( 5) 6 .44( 5)

*4 4 2 3 1 .1( 5) 1 .1( 1) 5 .9( 3) 6 .4( -3) 1 .52( 2) 6 .30( -1) 3 .67( -6)

4 4 2 4 -5 .8( 5) -8 .1( 5) -8 .0( 5) -8 .1( 5) -8 .08( 5) -8 .09( 5) -8 .09( 5)

*4 4 2 5 -9 .9( 4) -1 .0( 1) -4 .3( 3) -3 .0( -3) -9 .82( 1) -3 .66( -1) -1 .88( -6)

4 4 2 6 1 .5( 6) 1 .7( 6) 1 .7( 6) 1 .7( 6) 1 .67( 6) 1 .67( 6) 1 .67( 6)

_____________________________________________________________
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Table 3. Same as Table 2, but using a pairwise additive exponenetial interaction

potential for NH -H .3 2

number of Gauss poin t s______________________________________________

� m � � 8 11 14 201 1 2 __________ __________ ___________ __________

0 0 0 0 3 .155( 5) 3 .155( 5) 3 .155( 5) 3 .155( 5)

0 0 2 2 1 .303( 3) 1 .303( 3) 1 .303( 3) 1 .303( 3)

3 0 0 3 -3 .141( 3) -3 .141( 3) -3 .141( 3) -3 .141( 3)

3 0 2 1 1 .403( 1) 1 .389( 1) 1 .389( 1) 1 .389( 1)

3 0 2 3 -8 .602( 1) -8 .595( 1) -8 .595( 1) -8 .595( 1)

3 3 0 3 1 .890( 3) 1 .890( 3) 1 .890( 3) 1 .890( -3)

3 3 2 1 -8 .114( 0) -8 .356( 0) -8 .356( 0) -8 .356( 0)

*3 3 2 2 -6 .948( -2) 1 .496( -6) 7 .008( -6) 8 .641( -8)

3 3 2 3 5 .164( 1) 5 .171( 2) 5 .171( 1) 5 .171( 1)

*3 3 2 4 3 .077( -2) 3 .108( -5) -3 .375( -6) -3 .969( -8)

3 3 2 5 2 .160( 2) 2 .160( 2) 2 .160( 2) 2 .160( 2)

___________________________________________________________
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Table 4. Convergence as a function of number of Gauss integration points for selected

angular expansion terms for the H O-H pairwise additive exponential interaction2 2

multiplied by the factor given in Eq. (24). Terms with odd � +� +� are indicated with1 2

an asterisk. Number in parentheses is power of ten.

number of Gauss poin t s__________________________________________________

� m � � 9 12 15 241 1 2 ___________ ___________ ___________ ___________

2 2 0 2 8 .3983( 2) 8 .3981( 2) 8 .3983( 2) 8 .3983( 2)

2 2 2 0 9 .3548( 1) 9 .3490( 1) 9 .3548( 1) 9 .3548( 1)

*2 2 2 1 -1 .2276( 2) -1 .2274( 2) -1 .2276( 2) -1 .2276( 2)

2 2 2 2 1 .5307( 2) 1 .5310( 2) 1 .5307( 2) 1 .5307( 2)

*2 2 2 3 -1 .4298( 2) -1 .4300( 2) -1 .4298( 2) -1 .4298( 2)

2 2 2 4 2 .7853( 2) 2 .7852( 2) 2 .7853( 2) 2 .7853( 2)

3 2 0 3 8 3521( 2) 8 .3519( 2) 8 .3521( 2) 8 .3521( 2)

3 2 2 1 4 .1774( 1) 4 .1719( 1) 4 .1770( 1) 4 .1770( 1)

*3 2 2 2 -5 .8239( 1) -5 .8273( 1) -5 .8239( 1) -5 .8239( 1)

3 2 2 3 1 .0600( 2) 1 .0605( 2) 1 .0601( 2) 1 .0601( 2)

*3 2 2 4 -1 .0364( 2) -1 .0363( 2) -1 .0364( 2) -1 .0364( 2)

3 2 2 5 3 .2128( 2) 3 .2127( 2) 3 .2128( 2) 3 .2128( 2)

4 4 0 4 4 .6665( 1) 4 .6421( 1) 4 .6665( 1) 4 .6665( 1)

4 4 2 2 3 .4711( 0) 2 .8429( 0) 3 .4710( 0) 3 .4710( 0)

*4 4 2 3 -5 .3440( 0) -5 .1105( 0) -5 .3449( 0) -5 .3449( 0)

4 4 2 4 1 .1656( 1) 1 .1791( 1) 1 .1656( 1) 1 .1656( 1)

*4 4 2 5 -1 .2677( 1) -1 .2758( 1) -1 .2676( 1) -1 .2676( 1)

4 4 2 6 4 .0559( 1) 4 .0548( 1) 4 .0559( 1) 4 .0559( 1)

_______________________________________________________________
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Table 5. Angular expansion terms for the functions described by Eqs. (25) and (26) in

the text. Terms with odd � +� +� are indicated with an asterisk. N is the number of1 2

Gauss points; comparison with results for smaller N indicate that these values are

converged. Number in parentheses is power of ten.

Eq . (25) Eq . (26)

� m � � N = 27 N = 241 1 2 _________________________________

0 0 0 0 3 .077( 2) 4 .286( 2)

0 0 2 2 3 .794( 1) 1 .393( 1)

1 0 0 1 5 .728( 2) 3 .913( 2)

1 0 2 1 -4 .113( 1) -5 .556( 0)

1 0 2 3 5 .958( 1) 1 .313( 1)

2 0 0 2 4 .222( 2) 1 .163( 2)

2 0 2 0 1 .978( 1) 6 .160( -1)

2 0 2 2 -2 .646( 1) -1 .577( 0)

2 0 2 4 4 .263( 1) 4 .107( 0)

2 2 0 2 3 .843( 1) 2 .309( 1)

2 2 2 0 2 .520( 0) 3 .678( -1)

*2 2 2 1 -1 .075( 0) -1 .970( -1)

2 2 2 2 -1 .091( 0) 3 .590( -2)

*2 2 2 3 -1 .522( 0) -2 .607( -1)

2 2 2 4 6 .092( 0) 1 .687( 0)

3 0 0 3 1 .879( 2) 8 .512( 0)

3 0 2 1 9 .500( 0) -1 .159( -1)

3 0 2 3 -1 .172( 1) -3 .400( -1)

3 0 2 5 1 .658( 1) -8 .264( -1)

3 2 0 3 5 .157( 1) 1 .677( 1)
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3 2 2 1 3 .055( 0) 2 .033( -1)

*3 2 2 2 -6 .142( -1) -8 .099( -2)

3 2 2 3 -2 .228( 0) 1 .272( -2)

*3 2 2 4 -1 .548( 0) -1 .721( -1)

3 2 2 5 8 .666( 0) 1 .669( 0)

_____________________________________________


